Abstract
Low-cost flight-based hyperspectral imaging systems have the potential to provide important information for ecosystem and environmental studies as well as aide in land management. To realize this potential, methods must be developed to provide large-area surface reflectance data allowing for temporal data sets at the mesoscale. This paper describes a bootstrap method of producing a large-area, radiometrically referenced hyperspectral data set using the Landsat surface reflectance (LaSRC) data product as a reference target. The bootstrap method uses standard hyperspectral processing techniques that are extended to remove uneven illumination conditions between flight passes, allowing for radiometrically self-consistent data after mosaicking. Through selective spectral and spatial resampling, LaSRC data are used as a radiometric reference target. Advantages of the bootstrap method include the need for minimal site access, no ancillary instrumentation, and automated data processing. Data from two hyperspectral flights over the same managed agricultural and unmanaged range land covering approximately 5.8 km2 acquired on June 21, 2014 and June 24, 2015 are presented. Data from a flight over agricultural land collected on June 6, 2016 are compared with concurrently collected ground-based reflectance spectra as a means of validation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.