Abstract

AbstractCapillary evolution at bicrystal UO2 grain boundaries is characterized using in situ transmission electron microscopy. The discontinuous nature of the densification process, both particle rotation and axial strain, along with the large activation stress for densification support a hypothesis that grain boundary strain in UO2 follows nucleation rate limited kinetics at low to intermediate stresses, that is, less than . The temperature dependence of the average activation stress for sintering agrees well with analysis of bulk sintering data and creep data reported within the literature when analyzed in the context of a grain boundary dislocation nucleation rate limited kinetic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.