Abstract

Numerous forecasting models have been developed. Each has its own conditions of application. However, it has always been an important research objective to improve prediction accuracy with a small amount of data. In recent years, the grey forecasting model has achieved good prediction accuracy with limited data and has been widely used in various research fields. However, the grey forecasting models still have some potential problems that need to be improved. Therefore, this study proposed an improved transformed grey model based on a genetic algorithm (ITGM(1,1)), and used the output of the opto-electronics industry in Taiwan from 1990 to 2008 as an example for verification. Three grey forecasting models, GM(1,1), rolling GM(1,1), and the transformed GM(1,1), were chosen for the purpose of comparison with ITGM(1,1) by mean absolute percent error and root mean square percent error. The results show that ITGM(1,1) is more accurate than the other three models in both in-sample and out-of-sample forecasting performance, and can greatly improve the accuracy of short-term forecasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.