Abstract

Increasing number of emerging pollutants in environments requires an effective approach which can facilitate the prediction of reactivity and provide insights into the reaction mechanisms. Computational chemistry is exactly the tool to fulfill this demand with its good performance in theoretical investigation of chemical reactions at molecular level. In this study, chlorination of sulfonamide antibiotics is used as an illustration to present a systematic strategy demonstrating how computational chemistry can be applied to investigate the reaction behavior of emerging pollutants. Sulfonamides is a class of micropollutants that contain the common structure of 4-aminobenzenesulfonmaide while differ in their heterocycles. Based on the calculated conceptual DFT indices, the reactive sites of sulfonamide are successfully predicted, which locate on their common structure of 4-aminobenzenesulfonmaide. Therefore, all sulfonamides follow the similar reaction pathway. Product identification by LTQ-Orbitrap MS further verifies the in silico prediction. Three critical pathways are discovered, i.e., S-N bond cleavage, Cl-substitution onto aniline-N, and the following rearrangement to lose -SO2- group, among which Cl-substitution is the key step due to its lowest free energy barrier. Heterocycles impact the reaction rate by affecting the electronic density of aniline group. In general, the more electron-donating the heterocycle is, the more readily sulfonamides to be chlorinated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.