Abstract

Most neural networks require a set of training examples in order to attempt to approximate a problem function. For many real-world problems, however, such a set of examples is unavailable. Such a problem involving feedback optimization of a computer network routing system has motivated a general method of generating artificial training sets using evolutionary computation. This paper describes the method and demonstrates its utility by presenting promising results from applying it to an artificial problem similar to a real-world network routing optimization problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.