Abstract

We use Dynamic Light Scattering (DLS) to characterize non-spherical, micrometre-sized, single aerosol particles levitated in an electrodynamic or in a quasi-electrostatic balance. These are either solid salt particles effloresced from an aqueous salt solution droplet upon drying, or mixed phase aerosol particles, i.e. aqueous solution droplets containing a single solid salt inclusion. We show that the shortest decay of the temporal intensity autocorrelation function measured in the far field scattering pattern can be quantitatively analyzed. We treat the scattering pattern as if arising from an equivalent sized Mie sphere, and we attribute the temporal intensity fluctuations to rotational Brownian motion of the whole particle. This analysis allows sizing of non-spherical particles. We have indications that the long tails of the autocorrelation functions are due to deviations of the scattering pattern from that of a Mie sphere, leading to spikes in the temporal evolution of the intensity because of the rotational Brownian motion. We also show that the diffusional motion of an inclusion within the aqueous solution of a host droplet is masked by rotational Brownian motion, prohibiting even a qualitative analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.