Abstract

The lack of knowledge of lateral heterogeneity in unconventional reservoirs commonly has negative impacts on drilling, completion efficiency, and production. However, current methods, such as well logging and seismic surveying, are limited in their ability to characterize unconventional reservoirs. We develop an alternative geophysical approach that uses distributed acoustic sensing (DAS) and perforation shots to characterize unconventional reservoirs. In our field data set, DAS-recorded perforation shots show strong P-wave signals. The recorded P-wave waveforms from the study area exhibit dispersive behavior, which can be clearly identified after signal processing. The spatial variations in phase velocity along the horizontal wellbore can be reliably measured by averaging the measurements from multiple closely situated perforation shots. We observe a low phase-velocity zone along the study well, which is spatially consistent with the well logs and root mean square amplitude extracted from the 3D seismic volume. The observed dispersive behavior of P waves is validated through numerical modeling. By comparing the results from the proposed method with those from modeling results and other measurements, we conclude that the proposed method results in a reasonable radius of investigation for unconventional reservoir characterization. The method also has the potential to infer hydraulic fracturing effectiveness by comparing the phase-velocity difference before and after stimulation. The data acquisition of the proposed workflow can be combined with perforation shot operations, which provides a cost-effective and suitable approach to investigating lateral heterogeneity in unconventional reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.