Abstract

Noise and disorder are known, in certain circumstances and for certain systems, to improve the level of coherence over that of the noise-free system. Examples include cases in which disorder enhances response to periodic signals, and those where it suppresses chaotic behavior. We report a new type of disorder-enhancing mechanism, observed in a model that describes the dynamics of external cavity-coupled semiconductor laser arrays, where disorder of one type mitigates (and overcomes) the desynchronization effects due to a different disorder source. Here, we demonstrate stabilization of dynamical states due to frequency locking and subsequently frequency locking-induced phase locking. We have reduced the equations to a potential model that illustrates the mechanism behind the misalignment-induced frequency and phase synchronization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.