Abstract
PurposeThe variable expressivity and multisystem features of Noonan syndrome (NS) make it difficult for patients to obtain a timely diagnosis. Genetic testing can confirm a diagnosis, but underdiagnosis is prevalent owing to a lack of recognition and referral for testing. Our study investigated the utility of using electronic health records (EHRs) to identify patients at high risk of NS. MethodsUsing diagnosis texts extracted from Cincinnati Children’s Hospital’s EHR database, we constructed deep learning models from 162 NS cases and 16,200 putative controls. Performance was evaluated on 2 independent test sets, one containing patients with NS who were previously diagnosed and the other containing patients with undiagnosed NS. ResultsOur novel method performed significantly better than the previous method, with the convolutional neural network model achieving the highest area under the precision-recall curve in both test sets (diagnosed: 0.43, undiagnosed: 0.16). ConclusionThe results suggested the validity of using text-based deep learning methods to analyze EHR and showed the value of this approach as a potential tool to identify patients with features of rare diseases. Given the paucity of medical geneticists, this has the potential to reduce disease underdiagnosis by prioritizing patients who will benefit most from a genetics referral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.