Abstract

Convolutional Neural Networks combined with autonomous drones are increasingly seen as enablers of partially automating the aircraft maintenance visual inspection process. Such an innovative concept can have a significant impact on aircraft operations. Though supporting aircraft maintenance engineers detect and classify a wide range of defects, the time spent on inspection can significantly be reduced. Examples of defects that can be automatically detected include aircraft dents, paint defects, cracks and holes, and lightning strike damage. Additionally, this concept could also increase the accuracy of damage detection and reduce the number of aircraft inspection incidents related to human factors like fatigue and time pressure. In our previous work, we have applied a recent Convolutional Neural Network architecture known by MASK R-CNN to detect aircraft dents. MASK-RCNN was chosen because it enables the detection of multiple objects in an image while simultaneously generating a segmentation mask for each instance. The previously obtained F1 and F2 scores were 62.67% and 59.35%, respectively. This paper extends the previous work by applying different techniques to improve and evaluate prediction performance experimentally. The approach uses include (1) Balancing the original dataset by adding images without dents; (2) Increasing data homogeneity by focusing on wing images only; (3) Exploring the potential of three augmentation techniques in improving model performance namely flipping, rotating, and blurring; and (4) using a pre-classifier in combination with MASK R-CNN. The results show that a hybrid approach combining MASK R-CNN and augmentation techniques leads to an improved performance with an F1 score of (67.50%) and F2 score of (66.37%).

Highlights

  • This paper extends the previous work by applying different techniques to improve and evaluate prediction performance experimentally

  • MASK R-CNN and augmentation techniques leads to an improved performance with an F1 score of

  • Mask R-CNN is used to detect the dents on the given aircraft images

Read more

Summary

Introduction

Automated aircraft inspection basically aims at automating the visual inspection process normally carried out by aircraft engineers. It aims at detecting defects that are visible on the aircraft skin which are usually structural defects [1]. These defects can include dents, lightning strike damage, paint defects, fasteners defects, corrosion, and cracks, just to name a few. Automatic defect detection can be enabled by using a drone-based system that can scan the aircraft and detect/classify a wide range of defects in a very short time. Other alternatives would be using sensors in a smart hangar or at Aerospace 2020, 7, 171; doi:10.3390/aerospace7120171 www.mdpi.com/journal/aerospace

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.