Abstract

ObjectiveTo determine whether spiral analysis can monitor the effects of deep brain stimulation (DBS) in Parkinson disease (PD) and provide a window on clinical features that change post-operatively. Clinical evaluation after DBS is subjective and insensitive to small changes. Spiral analysis is a computerized test that quantifies kinematic, dynamic, and spatial aspects of spiral drawing. Validated computational indices are generated and correlate with a range of clinically relevant motor findings. These include measures of overall clinical severity (Severity), bradykinesia and rigidity (Smoothness), amount of tremor (Tremor), irregularity of drawing movements (Variability), and micrographia (Tightness). MethodsWe retrospectively evaluated the effect of subthalamic nucleus (STN) (n = 66) and ventral intermediate thalamus (Vim) (n = 10) DBS on spiral drawing in PD subjects using spiral analysis. Subjects freely drew ten spirals on plain paper with an inking pen on a graphics tablet. Five spiral indices (Severity, Smoothness, Tremor, Variability, Tightness) were calculated and compared pre- and post-operatively using Wilcoxon-rank sum tests, adjusting for multiple comparisons. ResultsSeverity improved after STN and Vim DBS (p < 0.005). Smoothness (p < 0.01) and Tremor (p < 0.02) both improved after STN and Vim DBS. Variability improved only with Vim DBS. Neither STN nor Vim DBS significantly changed Tightness. ConclusionsAll major spiral indices, except Tightness, improved after DBS. This suggests spiral analysis monitors DBS effects in PD and provides an objective window on relevant clinical features that change post-operatively. It may thus have utilization in clinical trials or investigations into the neural pathways altered by DBS. The lack of change in Tightness supports the notion that DBS does not improve micrographia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.