Abstract
Scientific computing is usually associated with compiled languages for maximum efficiency. However, in a typical application program, only a small part of the code is time-critical and requires the efficiency of a compiled language. It is often advantageous to use interpreted high-level languages for the remaining tasks, adopting a mixed-language approach. This will be demonstrated for Python, an interpreted object-oriented high-level language that is well suited for scientific computing. Particular attention is paid to high-level parallel programming using Python and the BSP model. We explain the basics of BSP and how it differs from other parallel programming tools like MPI. Thereafter we present an application of Python and BSP for solving a partial differential equation from computational science, utilizing high-level design of libraries and mixed-language (Python–C or Python–Fortran) programming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.