Abstract
Background and objectiveEarly childhood caries (ECC) is a potentially severe disease affecting children all over the world. The available findings are mostly based on a logistic regression model, but data mining, in particular association rule mining, could be used to extract more information from the same data set. MethodsECC data was collected in a cross-sectional analytical study of the 10% sample of preschool children in the South Bačka area (Vojvodina, Serbia). Association rules were extracted from the data by association rule mining. Risk factors were extracted from the highly ranked association rules. ResultsDiscovered dominant risk factors include male gender, frequent breastfeeding (with other risk factors), high birth order, language, and low body weight at birth. Low health awareness of parents was significantly associated to ECC only in male children. ConclusionsThe discovered risk factors are mostly confirmed by the literature, which corroborates the value of the methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.