Abstract
Compared with optical sensors, wearable inertial sensors have many advantages such as low cost, small size, more comprehensive application range, no space restrictions and occlusion, better protection of user privacy, and more suitable for sports applications. This article aims to solve irregular actions that table tennis enthusiasts do not know in actual situations. We use wearable inertial sensors to obtain human table tennis action data of professional table tennis players and non-professional table tennis players, and extract the features from them. Finally, we propose a new method based on multi-dimensional feature fusion convolutional neural network and fine-grained evaluation of human table tennis actions. Realize ping-pong action recognition and evaluation, and then achieve the purpose of auxiliary training. The experimental results prove that our proposed multi-dimensional feature fusion convolutional neural network has an average recognition rate that is 0.17 and 0.16 higher than that of CNN and Inception-CNN on the nine-axis non-professional test set, which proves that we can better distinguish different human table tennis actions and have a more robust generalization performance. Therefore, on this basis, we have better realized the enthusiast of table tennis the purpose of the action for auxiliary training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.