Abstract

Understanding how coronal structure propagates and evolves from the Sun and into the heliosphere has been thoroughly explored using sophisticated MHD models. From these, we have a reasonably good working understanding of the dynamical processes that shape the formation and evolution of stream interaction regions and rarefactions, including their locations, orientations, and structure. However, given the technical expertize required to produce, maintain, and run global MHD models, their use has been relatively restricted. In this study, we refine a simple Heliospheric eXtrapolation Technique (HUX) to include not only forward mapping from the Sun to 1 AU (or elsewhere), but backward mapping toward the Sun. We demonstrate that this technique can provide substantially more accurate mappings than the standard, and often applied “ballistic” approximation. We also use machine learning (ML) methods to explore whether the HUX approximation to the momentum equation can be refined without loss of simplicity, finding that it likely provides the optimum balance. We suggest that HUX can be used, in conjunction with coronal models (PFSS or MHD) to more accurately connect measurements made at 1 AU, Stereo-A, Parker Solar Probe, and Solar Orbiter with their solar sources. In particular, the HUX technique: 1) provides a substantial improvement over the “ballistic” approximation for connecting to the source longitude of streams; 2) is almost as accurate, but considerably easier to implement than MHD models; and 3) can be applied as a general tool to magnetically connect different regions of the inner heliosphere together, as well as providing a simple 3-D reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.