Abstract

Steam-separator temperature is an important parameter of ultra-supercritical boilers, where temperature deviations result in an increase in feed-water and a fast decline in steam temperature. Optimizing temperature deviations through manual operating-variables adjustments is difficult because of the complex relationships among influencing factors, as well as unacceptable increases in combustion air from opening baffles. Therefore, this research has used a core-vector regression (CVR) algorithm to model steam-separator temperature deviations. CVR is an extremely fast way to model the process and gives more accurate predictions than a support vector machine (SVM). Seventy-seven operating parameters were used as inputs, the objective was set as the temperature deviation factor of all the steam separators, and in total 17,338 experimental cases from the DCS were used in this study. Secondary-air volume adjustments at the C and D levels in #4 corner were carried out at different boiler loads in field tests, and the temperature deviation after each test was compared with the original value. Results showed that steam-temperature deviation was decreased by 29.6% and 36.3% respectively at 700MW and 530MW after secondary-air volume was adjusted to the target value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.