Abstract
In this paper, we study the posting behavior of online social network (OSN) users, in particular the posting frequency and temporal patterns, and consider possible interpretations of how users use the platform. At the aggregate (macro) level, we find two distinct peaks of traffic, one during morning working hours, and one in the evening. The morning peak is more pronounced for frequent posters, while the evening peak is pronounced for the remaining users. We postulate that this difference results from different usage purposes of the OSN platform (e.g. for work, with customers, etc.) than purely social interactions (e.g., friends, family, etc.). We also study user posting behavior at an individual (micro) level and model the user posting sequences as generated by a Hidden Markov Model. We compare the results of using a simple zeroth order model (which is equivalent to a topic model such as LDA), and a first-order model, in terms of their effectiveness in clustering and predicting user types, and show the advantage gained by the first-order HMM. Overall, our study provides new insights into user activity in today’s OSNs, and suggests a framework for profiling users based on their posting activities. We believe our approach will complement other methods of user profiling based on static demographic information and friendship network information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.