Abstract
In this paper, we investigate the problem of mitigating interference between so-called antenna domains of a cloud radio access network (C-RAN). In contrast to previous work, we turn to an approach utilizing primarily the optimal assignment of users to central processors in a C-RAN deployment. We formulate this user assignment problem as an integer optimization problem and propose an iterative algorithm for obtaining a solution. Motivated by the lack of optimality guarantees on such solutions, we opt to find lower bounds on the problem and the resulting interference leakage in the network. We thus derive the corresponding Dantzig-Wolfe decomposition, formulate the dual problem, and show that the former offers a tighter bound than the latter. We highlight the fact that the bounds in question consist of linear problems with an exponential number of variables and adapt the column generation method for solving them. In addition to shedding light on the tightness of the bounds in question, our numerical results show significant sum-rate gains over several comparison schemes. Moreover, the proposed scheme delivers similar performance as weighted minimum mean squared-error (MMSE) with a significantly lower complexity (around 10 times less).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.