Abstract
We describe the use of time-lapse fluorescence microscopy to visualize the movement of the DNA replication origin and terminus regions on the Bacillus subtilis chromosome during the course of the cell cycle. The origin and terminus regions were tagged with a cassette of tandem lac operator repeats and visualized through the use of a fusion of the green fluorescent protein to the LacI repressor. We have discovered that origin regions abruptly move apart towards the cell poles during a brief interval of the cell cycle. This movement was also seen in the absence of cell wall growth and in the absence of the product of the parB homologue spo0J. The origin regions moved apart an average distance of 1.4 microm in an 11 min period of abrupt movement, representing an average velocity of 0.17 microm min(-1), and reaching a maximum velocity of greater than 0.27 microm min(-1). The terminus region also exhibited a striking pattern of movement but not as far or a rapid as the origin region. These results provide evidence for a mitotic-like motor that is responsible for segregation of the origin regions of the chromosomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.