Abstract
Three-dimensional supersonic ideal-gas flow past axisymmetric finned bodies rotating about the longitudinal axis is considered. A calculation method based on the numerical solution of the Euler equations by finite differences is described. The effect of the rotation of the body is taken into account within the framework of the curvature hypothesis [1], which provided that the dimensionless rate of rotation is small reduces the solution of the unsteady three-dimensional problem of supersonic flow past a rotating body to the solution of the steady-state problem of flow past a nonrotating body with specially curved fins. The problem of the rotation of a finned body in a free stream is solved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.