Abstract

The kneading step of wholewheat flour (WWF) dough was monitored using low-resolution 1H nuclear magnetic resonance (NMR). The tested variables were kneading time and total water content. Two 1H Free induction decay (FID) (A and B) and four 1H T2 Car-Purcell-Meiboom-Gill (CPMG) (C, D, E and F) proton populations were observed and the attribution to the different proton domains was made based on the literature and data acquisition. Kneading time significantly increased the mobility and the relative abundance of popA, the relative abundance and strength of protons of popC, D and E, while significantly reducing the relative amount of popF and increasing its mobility. This evolution of the proton populations during kneading was interpreted as chemical/physical transformations of the flour constituents. The use of WWF may reveal the changes in molecular dynamics underlying the higher water requirements of unrefined doughs, often associated with improved bread quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.