Abstract

BackgroundArrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. New CMR techniques, such as non-Cartesian CMR, can allow self-gating: from cardiac motion-related signal changes, we can detect cardiac cycles without an electrocardiogram. We can further use this data to obtain a surrogate for RR intervals (valley intervals: VV). Our purpose was to evaluate the feasibility of an automated method for classification of non-arrhythmic (NA) (regular cycles) and arrhythmic patients (A) (irregular cycles), and for sorting of common arrhythmia patterns between atrial fibrillation (AF) and premature ventricular contraction (PVC), using the cardiac motion-related signal obtained during self-gated free-breathing radial cardiac cine CMR with compressed sensing reconstruction (XD-GRASP).MethodsOne hundred eleven patients underwent cardiac XD-GRASP CMR between October 2015 and February 2016; 33 were included for retrospective analysis with the proposed method (6 AF, 8 PVC, 19 NA; by recent ECG). We analyzed the VV, using pooled statistics (histograms) and sequential analysis (Poincaré plots), including the median (medVV), the weighted mean (meanVV), the total number of VV values (VVval), and the total range (VVTR) and half range (VVHR) of the cumulative frequency distribution of VV, including the median to half range (medVV/VVHR) and the half range to total range (VVHR/VVTR) ratios. We designed a simple algorithm for using the VV results to differentiate A from NA, and AF from PVC.ResultsBetween NA and A, meanVV, VVval, VVTR, VVHR, medVV/VVHR and VVHR/VVTR ratios were significantly different (p values = 0.00014, 0.0027, 0.000028, 5×10−9, 0.002, respectively). Between AF and PVC, meanVV, VVval and medVV/VVHR ratio were significantly different (p values = 0.018, 0.007, 0.044, respectively). Using our algorithm, sensitivity, specificity, and accuracy were 93 %, 95 % and 94 % to discriminate between NA and A, and 83 %, 71 %, and 77 % to discriminate between AF and PVC, respectively; areas under the ROC curve were 0.93 and 0.89.ConclusionsOur study shows we can reliably detect arrhythmias and differentiate AF from PVC, using self-gated cardiac cine XD-GRASP CMR.

Highlights

  • Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality

  • Our filtering step allowed us to discard irrelevant minima, corresponding to noise and contaminating the data, it was sensitive to the choice of a specific threshold value, since it led to a loss of reliability of valley detection for some of our arrhythmia patients (in total: 2 of the 8 patients in the premature ventricular contraction (PVC) group (Fig. 2))

  • Some of the arrhythmic PVC beats were not recorded as a distinct valley, the following beat could be detected as a postextrasystolic beat, since the Valley intervals (VV) was longer than expected, in the context of otherwise regular beats

Read more

Summary

Introduction

Arrhythmia can significantly alter the image quality of cardiovascular magnetic resonance (CMR); automatic detection and sorting of the most frequent types of arrhythmias during the CMR acquisition could potentially improve image quality. Our purpose was to evaluate the feasibility of an automated method for classification of non-arrhythmic (NA) (regular cycles) and arrhythmic patients (A) (irregular cycles), and for sorting of common arrhythmia patterns between atrial fibrillation (AF) and premature ventricular contraction (PVC), using the cardiac motion-related signal obtained during self-gated free-breathing radial cardiac cine CMR with compressed sensing reconstruction (XD-GRASP). The purpose of our study was to evaluate the feasibility of using an automated cardiac cycle detection and classification method to: 1) separate NA from A patients, and 2) further classify the A patients into AF and PVC groups, using the cardiac motion-related signal obtained during self-gated free-breathing golden-angle radial cardiac cine CMR with compressed sensing reconstruction (called XD-GRASP [5])

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.