Abstract

Jembrana disease virus (JDV) is a viral pathogen that causes Jembrana disease in Bali cattle (Bos javanicus) with high mortality rate. An easy and rapid diagnostic method is essential for further control this disease. We used a reverse transcription loop-mediated isothermal amplification (RT-LAMP) combined with lateral flow dipstick (LFD), based on conserved tm subunit of Jembrana disease virus env gene. The RT-LAMP conditions were optimized by varying the concentration of MgSO4, betaine, dNTP, and temperature as well as the time and duration of reaction. The primers sensitivity for JDV was confirmed. The method was able to detect env-tm gene dilution which contained 2×10(-15)g of template. Comparatively, the sensitivity of RT-LAMP/LFD was 100-fold more sensitive than reverse transcription-polymerase chain reaction. The primers specificity for JDV was also confirmed using positive and negative controls. This work also showed that virus detection could be done not only on total RNA extracted from blood but various organs could also be analyzed for the presence of JDV using RT-LAMP/LFD method. The whole process, including the LAMP reaction and the LFD hybridization step only lasts approximately 75min. Results of analysis can be easily observed with naked eyes without addition of any chemical or further analysis. The combination of RT-LAMP with LFD makes the method a more suitable diagnostic tool in conditions where sophisticated and expensive equipments are not available for field investigations on Jembrana disease in Bali cattle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.