Abstract
The stability of transgenic DNA encoding the synthetic cp4 epsps protein in a diet containing Roundup Ready (RR) ® canola meal was determined in duodenal fluid (DF) batch cultures from sheep. A real-time TaqMan ® PCR assay was designed to quantify the degradation of cp4 epsps DNA during incubation in DF at pH 5 or 7. The copy number of cp4 epsps DNA in the diet declined more rapidly ( P < 0.05) in DF at pH 5 as compared to pH 7. The decrease was attributed mainly to microbial activity at pH 7 and perhaps to plant endogenous enzymes at pH 5. The 62-bp fragment of cp4 epsps DNA detected by real-time PCR reached a maximum of approximately 1600 copies in the aqueous phase of DF at pH 7, whereas less than 20 copies were detected during incubations in DF at pH 5. A 1363-bp sequence of cp4 epsps DNA was never detected in the aqueous fraction of DF. Additionally, genomic DNA isolated from RR ® canola seed was used to test the persistence of fragments of free DNA in DF at pH 3.2, 5, and 7, as well as in ruminal fluid and feces. Primers spanning the cp4 epsps DNA coding region amplified sequences ranging in size from 300 to 1363 bp. Free transgenic DNA was least stable in DF at pH 7 where fragments less than 527 bp were detected for up to 2 min and fragments as large as 1363 bp were detected for 0.5 min. This study shows that digestion of plant material and release of transgenic DNA can occur in the ovine small intestine. However, free DNA is rapidly degraded at neutral pH in DF, thus reducing the likelihood that intact transgenic DNA would be available for absorption through the Peyer’s Patches in the distal ileum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.