Abstract

Spatial variability in N uptake and utilisation by swards within uniformly managed field units could be responsible for a significant proportion of the NH 3, N 2O, NO − 3 and NO x (NO and NO 2) ‘pollutants’ generated by agriculture and released to the environment. An investigation was commenced, therefore, to quantify, map and explain the spatial variability in sward N yield in a ‘large’ silage field and to assess the potential for managing this variability using some of the latest precision agriculture technology. Sward dry matter (DM) and N yields were predicted from the results of plant tissue analyses using mathematical models. Sward N yields were found to vary greatly across the field seemingly because of differences in net soil N mineralisation, but the pattern of variability appeared to remain constant with time. Conventional soil analysis of a range of soil chemical and physical properties, however, failed to explain this variability. It was concluded that the N-yield distribution map might be used in place of soil analysis as the basis for varying the rates of N application to different parts of the field with the twin objectives of maximising fertiliser use efficiency and minimising N emissions to air and water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.