Abstract

Calretinin (CR) is a calcium-binding, neuronal protein of undefined function. Related proteins either buffer intracellular calcium concentrations or are involved in calcium-signaling pathways. We transformed three CR gene fragment sequences, corresponding to its three complementary domains (I-II, III-IV, and V-VI), into Pichia pastoris. High yields of extracellular expression, of more than 200 mg/liter, were achieved. Simple purification protocols provide high yields of homogenous proteins: dialysis and DEAE-cellulose chromatography for domains I-II and III-IV or ammonium sulfate precipitation and octyl-Sepharose chromatography for domain V-VI. To our knowledge, this is the first report of the expression of an EF-hand protein using P. pastoris. Direct comparison of the purified yields of domain I-II indicates a approximately 20-fold improvement over Escherichia coli. N-terminal amino acid sequencing confirmed our gene products and two anti-calretinin antibodies recognized the appropriate domains. All three CR domains bind (45)Ca and the domain containing EF-hands V and VI seems to have a lower calcium capacity than the other domains. Circular dichroism indicates a high helix content for each of the domains. Calcium-induced structural changes in the first two domains, followed by tryptophan fluorescence, correspond with previous studies, while tyrosine emission fluorescence indicates calcium-induced structural changes also occur in domain V-VI. The methods and expression levels achieved are suitable for future NMR labeling of the proteins, with (15)N and (13)C, and structure-function studies that will help to further understand CR function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.