Abstract
The use of glucose starvation to uncouple the production of recombinant beta-galactosidase from cell growth in Escherichia coli was investigated. A lacZ operon fusion to the carbon starvation-inducible cst-1 locus was used to control beta-galactosidase synthesis. beta-Galactosidase induction was observed only under aerobic starvation conditions, and its expression continued for 6 h following the onset of glucose starvation. The cessation of beta-galactosidase expression closely correlated with the exhaustion of acetate, an overflow metabolite of glucose, from the culture medium. Our results suggest the primary role of acetate in cst-1-controlled protein expression is that of an energy source. Using this information, we metered acetate to a glucose-starved culture and produced a metabolically sluggish state, where growth was limited to a low linear rate and production of recombinant beta-galactosidase occurred continuously throughout the experiment. The cst-1 controlled beta-galactosidase synthesis was also induced at low dilution rates in a glucose-limited chemostat, suggesting possible applications to high-density cell systems such as glucose-limited recycle reactors. This work demonstrates that by using an appropriate promoter system and nutrient limitation, growth can be restrained while recombinant protein production is induced and maintained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.