Abstract

BackgroundThe increase in accuracy of prediction by using genomic information has been well-documented. However, benefits of the use of genomic information and methodology for genetic evaluations are missing when genotype-by-environment interactions (G × E) exist between bio-secure breeding (B) environments and commercial production (C) environments. In this study, we explored (1) G × E interactions for broiler body weight (BW) at weeks 5 and 6, and (2) the benefits of using genomic information for prediction of BW traits when selection candidates were raised and tested in a B environment and close relatives were tested in a C environment.MethodsA pedigree-based best linear unbiased prediction (BLUP) multivariate model was used to estimate variance components and predict breeding values (EBV) of BW traits at weeks 5 and 6 measured in B and C environments. A single-step genomic BLUP (ssGBLUP) model that combined pedigree and genomic information was used to predict EBV. Cross-validations were based on correlation, mean difference and regression slope statistics for EBV that were estimated from full and reduced datasets. These statistics are indicators of population accuracy, bias and dispersion of prediction for EBV of traits measured in B and C environments. Validation animals were genotyped and non-genotyped birds in the B environment only.ResultsSeveral indications of G × E interactions due to environmental differences were found for BW traits including significant re-ranking, heterogeneous variances and different heritabilities for BW measured in environments B and C. The genetic correlations between BW traits measured in environments B and C ranged from 0.48 to 0.54. The use of combined pedigree and genomic information increased population accuracy of EBV, and reduced bias of EBV prediction for genotyped birds compared to the use of pedigree information only. A slight increase in accuracy of EBV was also observed for non-genotyped birds, but the bias of EBV prediction increased for non-genotyped birds.ConclusionsThe G × E interaction was strong for BW traits of broilers measured in environments B and C. The use of combined pedigree and genomic information increased population accuracy of EBV substantially for genotyped birds in the B environment compared to the use of pedigree information only.

Highlights

  • The increase in accuracy of prediction by using genomic information has been well-documented

  • For body weight (BW) of broiler chicken, G × E interactions have been reported with genetic correlations ranging from 0.46 to 0.69 [1], from 0.74 to 0.76 [3] and from 0.75 to 0.76 [4] between traits measured in environments B and C

  • Genomic information on birds raised in both B and C was used for prediction of estimated breeding values (EBV) of birds in B for BW traits measured in the B and C environments

Read more

Summary

Introduction

The increase in accuracy of prediction by using genomic information has been well-documented. We explored (1) G × E interactions for broiler body weight (BW) at weeks 5 and 6, and (2) the benefits of using genomic information for prediction of BW traits when selection candidates were raised and tested in a B environment and close relatives were tested in a C environment. The difference in production conditions between highly bio-secure breeding (B) and commercial production environments (C) can lead to genotype-by-environment interaction (G × E) in broiler chicken [1]. For body weight (BW) of broiler chicken, G × E interactions have been reported with genetic correlations ranging from 0.46 to 0.69 [1], from 0.74 to 0.76 [3] and from 0.75 to 0.76 [4] between traits measured in environments B and C

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.