Abstract

Drug effects can be investigated through natural variation in the genes for their protein targets. The present study aimed to use this approach to explore the potential side effects and repurposing potential of antihypertensive drugs, which are among the most commonly used medications worldwide. Genetic proxies for the effect of antihypertensive drug classes were identified as variants in the genes for the corresponding targets that associated with systolic blood pressure at genome-wide significance. Mendelian randomization estimates for drug effects on coronary heart disease and stroke risk were compared with randomized, controlled trial results. A phenome-wide association study in the UK Biobank was performed to identify potential side effects and repurposing opportunities, with findings investigated in the Vanderbilt University biobank (BioVU) and in observational analysis of the UK Biobank. Suitable genetic proxies for angiotensin-converting enzyme inhibitors, β-blockers, and calcium channel blockers (CCBs) were identified. Mendelian randomization estimates for their effect on coronary heart disease and stroke risk, respectively, were comparable to results from randomized, controlled trials against placebo. A phenome-wide association study in the UK Biobank identified an association of the CCB standardized genetic risk score with increased risk of diverticulosis (odds ratio, 1.02 per standard deviation increase; 95% CI, 1.01-1.04), with a consistent estimate found in BioVU (odds ratio, 1.01; 95% CI, 1.00-1.02). Cox regression analysis of drug use in the UK Biobank suggested that this association was specific to nondihydropyridine CCBs (hazard ratio 1.49 considering thiazide diuretic agents as a comparator; 95% CI, 1.04-2.14) but not dihydropyridine CCBs (hazard ratio, 1.04; 95% CI, 0.83-1.32). Genetic variants can be used to explore the efficacy and side effects of antihypertensive medications. The identified potential effect of nondihydropyridine CCBs on diverticulosis risk could have clinical implications and warrants further investigation.

Highlights

  • Drug effects can be investigated through natural variation in the genes for their protein targets

  • There was 1 gene identified for each drug target for angiotensinconverting enzyme (ACE) inhibitors (ACE), angiotensin receptor blockers (AGTR1), BBs (ADRB1), and thiazide diuretic agents (SLC12A3), and 11 genes for calcium channel blockers (CCB) (CACNA1D, CACNA1F, CACNA2D1, CACNA2D2, CACNA1S, CACNB1, CACNB2, CACNB3, CACNB4, CACNG1, and CACNA1C) encoding the different calcium channel subunits related to effects on blood pressure

  • The CACNA1F gene is located on the X chromosome, and single-nucleotide polymorphisms (SNPs) corresponding to this region were not available

Read more

Summary

Methods

Genetic proxies for the effect of antihypertensive drug classes were identified as variants in the genes for the corresponding targets that associated with systolic blood pressure at genome-wide significance. A phenome-wide association study in the UK Biobank was performed to identify potential side effects and repurposing opportunities, with findings investigated in the Vanderbilt University biobank (BioVU) and in observational analysis of the UK Biobank. In 2015, the 874 million adults worldwide estimated to have a systolic blood pressure (SBP) of ≥140 mm Hg accounted for 106 deaths per 100 000 and loss of 143 million disability-adjusted life-years,[1] making hypertension a leading cause of mortality and morbidity. Blood pressure lowering through lifestyle modification or pharmacological treatment can significantly decrease cardiovascular risk, with every 10 mm Hg reduction estimated to decrease risk of all-cause mortality by 13%.2

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.