Abstract

Engineered variants of a carboxylesterase from Lucilia cuprina (E3) and a phosphotriesterase from Agrobacterium radiobacter (OpdA) with enhanced hydrolytic activities against pyrethroid and organophosphate pesticides were evaluated as a toxicity identification evaluation (TIE) manipulation. Reduction in toxicity in the presence of the enzyme provides an indication that the toxicant is the enzyme's target substrate. Carboxy/esterase E3 variants were evaluated to determine if the enzymes could mitigate toxicity of pyrethroids to the amphipod, Hyalella azteca. Enzymes were able to achieve 12-70-fold reduction in toxicity for bifenthrin, cyfluthrin, and cypermethrin in water. Only a 2-fold reduction in toxicity was observed with pyrethroid-contaminated sediment though the phosphotriesterase OpdA achieved at least a 35-fold reduction in toxicity from the organophosphate chlorpyrifos in sediment. Tests with urban runoff samples and agriculture-affected sediments demonstrated that the enzymes could be useful in TIEs to identify pesticide-related toxicity. The approach promises to be a useful TIE tool for organophosphate and pyrethroid pesticides, particularly in a water matrix, and potentially could be used for identification of toxicity attributable to other pesticides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.