Abstract

Without any additional preparation, Cd1−yZnyTe (211)B (y∼3.5%) wafers were cleaned by exposure to an electron cyclotron resonance (ECR) Ar/H2 plasma and used as substrates for HgCdTe molecular beam epitaxy. Auger electron spectra were taken from as-received wafers, conventionally prepared wafers (bromine: methanol etching, followed by heating to 330–340°C), and wafers prepared under a variety of ECR process conditions. Surfaces of as-received wafers contained ∼1.5 monolayers of contaminants (oxygen, carbon, and chlorine). Conventionally prepared wafers had ∼1/4 monolayer of carbon contamination, as well as excess tellurium and/or excess zinc depending on the heating process used. Auger spectra from plasma-treated CdZnTe wafers showed surfaces free from contamination, with the expected stoichiometry. Stoichiometry and surface cleanliness were insensitive to the duration of plasma exposure (2–20 s) and to changes in radio frequency input power (20–100 W). Reflection high energy electron diffraction patterns were streaked indicating microscopically smooth and ordered surfaces. The smoothness of plasma-etched CdZnTe wafers was further confirmed ex situ using interferometric microscopy. Surface roughness values of ∼0.4 nm were measured. Characteristics of HgCdTe epilayers deposited on wafers prepared with plasma and conventional etching were found to be comparable. For these epilayers, etch pit densities on the order of 105 cm−2 have been achieved. ECR Ar/H2 plasma cleaning is now utilized at Night Vision and Electronic Sensors Directorate as the baseline CdZnTe surface preparation technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.