Abstract

A methodology for the modernization of technological processes for the hot forging of aluminum alloy forgings based on computer simulation has been developed. The modernization procedure is outlined, including the analysis of an analogous technological process, the development of a virtual technological process structure, the creation of forging and die models in the SolidWorks program, the formulation of a computer simulation problem, the input of simulation parameters, the launch and analysis of a computer technology model, and the development of recommendations for modernizing an existing process with subsequent pilot testing of technology. An example of the methodology was the die forging technology “Rack” made of 5083 alloy, which is a single-plane complex-shaped panel with stiffeners. The analysis of the technology-analogue made it possible to formulate the problem of finding the possibility of reducing operations. Temperature, speed, and power deformation modes were introduced, which were a deformation rate of 0.3 mm/s, billet-heating temperature 450 °C, and the temperature of a die 400 °C. The output was a database of the process. At the end of the virtual experiment, the technology was tested on laboratory equipment, and a comparative analysis of the two technologies was carried out, which presented the advantages of the proposed isothermal die forging technology and developed recommendations for updating the existing technology. The transition to isothermal die forging will reduce the number of passes from three to one. All this will lead to an increase in metal utilization rate from 0.44 to 0.77.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.