Abstract

Hydrophobic interaction chromatography (HIC) of proteins using a phenyl column has been performed in the presence of various surfactants with micellar and submicellar concentration ranges. Most surfactants were effective for a decrease in the retention of proteins in both concentration ranges. However, the use of anionic cholate derivatives increased the retention of the proteins with high isoelectric point, such as lysozyme, cytochrome c, and trypsin, in submicellar concentration range, and then decreased it above the critical micellar concentration, while the retention of the other proteins was monotonously decreased. The results of frontal chromatographic analysis of the surfactant and capillary electrophoresis for the proteins in the presence of surfactant show that in the submicellar concentration range, cholate derivatives allowed to be adsorbed on the stationary phase, while they exhibited no interactions with the proteins. Thus, it appeared that the increase in the retention of basic proteins was due to the electrostatic attraction between the proteins and cholate-modified stationary phase. We have applied the unique property of cholate to the separation of ovalbumin and lysozyme in egg white sample using hydrophobic chromatography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.