Abstract

The question of penetration of synthetic aperture radar (SAR) signals at C-band frequency into polar glaciers is addressed by comparing ground penetrating radar (GPR) and SAR backscatter signatures. Profiles of the Kongsvegen glacier, Svalbard, were obtained with a C-band GPR. The received signal is converted to the equivalent radar cross section using the standard radar equation, thus mapping the effective scattering sources within the glacier at this frequency. The depth of the observed scattering sources is greatest in the superimposed ice where layers are clearly seen to a depth of approximately 14 m. The very high scattering properties of the upper firn layers preclude layers deeper than approximately 6 m from being imaged. Integrating the radar cross sections over the depth gives a single backscatter value that we compare with the backscatter coefficient (scattering cross section per unit area) of the processed SAR data for the same profile. The comparison indicates that for coincidentally acquired GPR and SAR data, the radar cross section measured by the GPR does represent the features that contribute to the SAR signal

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.