Abstract
The vertical transports of heat and moisture at the Earth's surface provide a critical linkage between meteorological, hydrological and ecological processes. Unfortunately, estimates of energy and water fluxes by land surface–atmosphere models are difficult to validate. This is due to the fine spatial and temporal resolution of the models, as well as a lack of widespread observations of these fluxes and other components of the surface energy budget. However, modelled fluxes of energy and water are often based largely on accurate determination of the modelled soil surface temperature. Land surface temperatures (LSTs) derived from the Advanced Very High Resolution Radiometer (AVHRR) onboard polar-orbiting satellites can be determined over large spatial extents a few times per day. They provide a means by which modelled surface temperatures, and thus modelled fluxes, can be evaluated. In this paper, two versions of the Simulator for Hydrology and Energy Exchange at the Land Surface (SHEELS) model are evaluated using AVHRR-derived LSTs. Model vegetation cover is held constant in the first version, whereas Normalized Difference Vegetation Index (NDVI) data are used to temporally modify vegetation cover in the second version. Inclusion of the NDVI data is found to decrease the bias between modelled and satellite-derived LSTs by 0.5 K. However, even with this improvement in vegetation parametrization, bias remains large (3.7 K).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.