Abstract
In three separate experiments, the effectiveness of a SPAD-502 portable chlorophyll (Chl) meter was evaluated for estimating Chl content in leaves of Eugenia uniflora seedlings in different light environments and subjected to soil flooding. In the first experiment, plants were grown in partial or full sunlight. In the second experiment plants were grown in full sunlight for six months and then transferred to partial sunlight or kept in full sunlight. In the third experiment plants were grown in a shade house (40% of full sunlight) for six months and then transferred to partial shade (25–30% of full sunlight) or full sunlight. In each experiment, plants in each light environment were either flooded or not flooded. Non-linear regression models were used to relate SPAD values to leaf Chl content using a combination of the data obtained from all three experiments. There were no significant effects of flooding treatments or interactions between light and flooding treatments on any variable analyzed. Light environment significantly affected SPAD values, chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll [Chl (a+b)] contents in Experiment I (p≤0.01) and Experiment III (p≤0.05). The relationships between SPAD values and Chl contents were very similar among the three experiments and did not appear to be influenced by light or flooding treatments. There were high positive exponential relationships between SPAD values and Chl (a+b), Chl a, and Chl b contents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.