Abstract

This paper presents a combined finite-element and analytical modelling technique for the prediction of force density harmonics in salient pole synchronous machines. The model calculates the induced currents in the damper winding cage and includes their effect on force density components in the solution. Use of a combined analytical and finite element approach reduces simulation times compared to full time-stepping finite element solutions, while including the effects of design changes on airgap force harmonics. Results of the model predictions are presented together with measured data from two different machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.