Abstract
The purpose is to calculate the composite 3D biological effective dose (BED) distribution in healthy liver, when multiple lesions are treated concurrently with different hypo-fractionated schemes and stereotactic body radiation therapy, and to investigate the potential of biological based plan optimization. Two patients, each having two tumors that were treated sequentially with different treatment plans, were selected. The treatment information of both treatment plans of the patients was used and their dose matrices were exported to an in-house MATLAB software, which was used to calculate the composite BED distribution. The composite BED distributions were used to determine if the healthy liver received BED beyond tolerance. When the dose to the minimum critical volume was less than tolerance, an optimization code was used to derive the scaling factors (ScF) that should be applied to the dose matrix of each plan until the minimum critical volume of healthy liver reaches a BED close to tolerance. It was shown that for each patient, there is a margin for dose escalation regarding the doses to the individual targets. More specifically, the ScFs of the doses range between 5.6 and 99 in the first patient, whereas for the second patient, the ScFs of the optimal doses range between 12.7 and 35.6. The present study indicates that there is a significant margin for dose escalation without increasing the radiation toxicity to the healthy liver. Also, the calculation of the composite BED distribution can provide additional information that may lead to a better assessment of the liver's tolerance to different fractionation schemes and prescribed doses as well as more clinically relevant treatment plan optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Australasian Physical & Engineering Sciences in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.