Abstract

BackgroundDespite evidence of the endocrine disrupting properties of zearalenone (ZEN) and alpha-zearalanol (zeranol, α-ZAL), they have been minimally studied in human populations. In previous cross-sectional analyses, we demonstrated that 9–10 years old girls with detectable urinary ZEN were of shorter stature and less likely to have reached the onset of breast development than girls with undetectable urinary ZEN. The aim of this study was to examine baseline concentrations of ZEN, (α-ZAL), and their phase-1 metabolites in relation to subsequent growth and timing of menarche using 10 years of longitudinal data.MethodsUrine samples were collected from participants in the Jersey Girl Study at age 9–10 (n = 163). Unconjugated ZEN, (α-ZAL), and their metabolites were analyzed using high performance liquid chromatography and tandem mass spectrometry. Information on height, weight, and pubertal development was collected at a baseline visit with annual follow-up by mail thereafter. Cox regression was used to evaluate time to menarche in relation to baseline ZEN, (α-ZAL), and total mycoestrogen exposure. Z-scores for height and weight were used in mixed models to assess growth.ResultsMycoestrogens were detectable in urine in 78.5% of the girls (median ZEN: 1.02 ng/ml, range 0–22.3). Girls with detectable urinary concentrations of (α-ZAL) and total mycoestrogens (sum of ZEN, (α-ZAL) and their metabolites) at baseline were significantly shorter at menarche than girls with levels below detection (p = 0.04). ZEN and total mycoestrogen concentrations were inversely associated with height- and weight-z-scores at menarche (adjusted β = − 0.18, 95% CI: -0.29, − 0.08, and adjusted β = − 0.10, 95% CI: -0.21, 0.01, respectively).ConclusionThis study supports and extends our previous results suggesting that exposure to ZEN, (α-ZAL), and their metabolites is associated with slower growth and pubertal development in adolescent girls.

Highlights

  • Puberty is a critical developmental window during which there are rapid and significant changes in maturation and activation of multiple hormone axes [1, 2]

  • ZEN was detected in 55% of the samples, α-ZAL in 20% for and total mycoestrogens in 78%. [16]

  • The current study has expanded the findings from our previous report suggesting delayed pubertal development in girls with detectable mycoestrogen levels compared to girls with levels below the LOD [16]

Read more

Summary

Introduction

Puberty is a critical developmental window during which there are rapid and significant changes in maturation and activation of multiple hormone axes [1, 2] These changes make puberty a susceptible time period for endocrine disruption. ZEN and α-ZAL are widely found in the food supply, where exposure may be deliberate (e.g. α-ZAL administered to livestock as a growth promoter) or inadvertent (e.g. fungal contamination of grain products by ZEN) Both ZEN and α-ZAL can be found through a range of food products including cereal, meat, milk, wine, beer, dried fruit and spices. The aim of this study was to examine baseline concentrations of ZEN, (α-ZAL), and their phase-1 metabolites in relation to subsequent growth and timing of menarche using 10 years of longitudinal data

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.