Abstract

A lack of well-established parameters and assessment values currently impairs biomonitoring of n-heptane exposure. Using controlled inhalation experiments, we collected information on urinary n-heptane metabolite concentrations and the time course of metabolite excretion. Relationships between external and internal exposure were analysed to investigate the suitability of selected metabolites to reflect n-heptane uptake.Twenty healthy, non-smoking males (aged 19–38 years, median 25.5) were exposed for 3 h to 167, 333 and 500 ppm n-heptane, each. Spot urine samples of the volunteers, collected before exposure and during the following 24 h, were analysed for heptane-2-one, 3-one, 4-one, 2,5-dione, 1-ol, 2-ol, 3-ol, and 4-ol using headspace solid phase dynamic extraction gas chromatography/mass spectrometry (HS-SPDE-GC/MS).Starting from median pre-exposure concentrations between <0.5 (3-one) and 82.9 μg/L (4-one), exposure increased the concentrations for all parameters except for 4-one. Median post-exposure concentrations ranged up to 840.4 μg/L (2-ol) and decreased with half-lifes <3 h after exposure. Non-parametric correlation analyses (n = 47, p < 0.05) revealed weak to moderate associations of volume related metabolite excretion with external exposure for 2-one, 3-one and 2,5-dione (R = 0.332–0.753). Heptanol excretion was moderately associated with exposure (R ≥ 0.509) only after creatinine adjustment.Lacking association with external exposure impedes the use of 4-one as heptane biomarker, whereas 2-ol and 3-ol turned out to be sensitive indicators of exposure if creatinine correction is applied. By providing fundamental data on a panel of eight potential heptane metabolites, our study can help to promote biological monitoring of n-heptane exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.