Abstract

In high-throughput drug screening applications, as manual drug sample delivery is time-consuming and error-prone, there is an urgent need for accurate and efficient drug sample delivery biochip for large-scale microwell arrays. This paper proposes a new microfluidic biochip architecture, where drugs are automatically prepared with different concentration values, and then delivered into multiple microwells. For large-scale drug sample delivery biochips, the routing of drug sample delivery channels is a very challenging task without effective routing solutions. This paper proposes an ultrafast rule-based escape routing method, called URBER, to address the large-scale routing of drug sample delivery channels, which scales well in both runtime and memory even for a very large problem size. URBER runs very fast because it routes channels based on a set of predefined rules, which avoids runtime consumed in solution space exploration. All benchmarks for 30 ${\le }~{N}$ , ${M} {\le }~100$ have been tested, where ${N}$ and ${M}$ are the number of columns and rows of the terminal array. Among these benchmarks, about ~91.9% are routed with optimal solutions, and the runtime is order of magnitudes faster than optimal min-cost flow-based methods (speedup is from ~600 to ~340 k). Specifically, for all benchmarks with ( ${M}/{N}$ ) ${\in }$ ((3/4), (4/3)), optimal routing solutions are always obtained. URBER also shows promise of routing large-scale designs with up to 500 k terminals efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.