Abstract
The revolution of smart city has led to rapid development and proliferation of Internet of Things (IoT) technologies, with the focus on transmitting raw sensory data into valuable knowledge. Meanwhile, the ubiquitous deployments of IoT are raising the importance of processing data in real-time at the edge of networks rather than in remote cloud data centers. Based on above, edge computing has been proposed to exploit the capabilities of edge devices in providing in-proximity computing services for various IoT applications. In this paper, we present UrbanEdge, a conceptual edge computing architecture empowered by deep learning for urban IoT time series prediction. We design a hierarchical architecture to process correlated IoT time series and illustrate the work-flow of UrbanEdge in data collection, data transmission and data processing. As a core component of UrbanEdge, a deep learning model is developed with attention-based recurrent neural networks. Composed with multiple processing layers, the deep learning model can extract feature representations from raw IoT data for monitoring and prediction. We evaluate the designed deep learning model of UrbanEdge on real-world datasets, evaluation results show that the UrbanEdge outperforms other baseline methods in time series prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.