Abstract

Failure to account for non-climatic changes to water systems, such as design and operation, within climate change impact assessments leads to misconceptions because these activities buffer the human built enviroment from bio-physical impacts. Urban drainage in cold regions, which is dominated by snowmelt, is especially vulnerable to climate change and is investigated in this paper within the context of future rehabilitation of the sewer network. The objectives are to illustrate the relative response of urban drainage to changes in both the pipe network and climate and demonstrate the use of response surfaces for climate change studies. An incremental climate scenario approach is used to generate two sensitivity analyses for waste water inflows to the Lycksele waste water treatment plant in north-central Sweden. Air temperature and precipitation data (1984–1993) are altered incrementally between –5 and +15 °C and –10 and +40% respectively. These data are then used to drive a hydrological transformation model to obtain estimates of sewer infiltration from groundwater. The results are presented as winter and spring response surfaces – these are graphical representations of a response matrix where each point relates to a single model run. Climate scenario envelopes which summarise a series of GCM runs (ACACIA; Carter, 2002, pers. comm.) are overlaid to indicate the range of plausible waste water inflows. Estimates of natural multi-decadal variability are also included. The first sensitivity analysis assumes no change to the drainage system while the second simulates sewer renovation in which the system is fully separated and sewer infiltration is reduced. The main conclusions are that innovations in drainage network technology have a greater potential to alter waste water inflows than climate change and that, while the direction of climate change is fairly certain, there is great uncertainty surrounding magnitude of those changes and their impacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.