Abstract
Measured Pb-Pb whole meteorite data for the Bruderheim L6 chondrite scatter slightly about a line passing above Can˜on Diablo lead and yielding an age of 4.482 + 0.017 Ga, using the terrestrial 238U/ 235U ratio of 137.88. The measured U isotopic composition for Bruderheim, using the dissolution procedures employed for these U-Pb studies, is near the terrestrial composition. In the concordia diagram the U-Pb data chiefly plot above the concordia curve and define a line which intersects the concordia curve at 4.536 + 0.006 Ga and 0.495 Ga, but the data for Bruderheim cannot be understood at all in terms of the more usual two- or three-stage episodic U-Pb models involving a fixed μ-value in the first stage. Most samples show an apparent excess of radiogenic lead for single-stage (closed system) evolution when Can˜on Diablo troilite is used for the initial lead composition. Evidence is presented to show that the apparent excess radiogenic lead cannot be explained by terrestrial contamination alone. A different U-Pb model is presented which describes qualitatively and quantitatively most features of the U-Pb data for Bruderheim. If this model correctly describes the U-Pb evolution of Bruderheim then the “formation” age is given as 4.536 Ga by both U-Pb and Pb-Pb data, the meteorite U-Pb system was disturbed by a later (shock?) event at about 500 Ma ago, and the data are consistent with (though do not require) a Can˜on Diablo initial lead composition. This interpretation suggests that the classical phenomenon of apparent excess radiogenic lead reflects the application of a single-stage model to a meteorite that has evidently experienced at least a two-stage history. The explanation of the observation that in the concordia diagram most meteorite samples (corrected for Can˜on Diablo lead) plot in the lead excess region remains obscure, though this may be due to the wrong choice of initial lead for Bruderheim.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.