Abstract

Inspired by the high affinity of copper with DNA and RNA, a uracil-copper catalytic system was developed to promote ring-opening allylation of cyclopropanols with allylic alcohols under water-tolerant conditions. A new C-OH bond-breaking model can well resolve the trade-off between the need for acidic activators for C(allyl)-OH bond cleavage and the demand for strong basic conditions for generating homoenolates. Therefore, Morita-Baylis-Hillman alcohols, rather than their pre-activated versions, could be incorporated directly into dehydrative cross-coupling with cyclopropanols delivering water as the only by-product. A variety of functionalized δ,ε-unsaturated ketones were obtained in good-to-high yield with high E-selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.