Abstract

Solidification thermal parameters, such as growth rate, cooling rate and dendrite arm spacing (λ), have been measured in a hypoeutectic Al-Mg alloy directionally solidified under upward and downward transient heat flow conditions. The experimental setup used in this work consists of a water-cooled mould with heat being extracted from the bottom or the top, promoting upward and downward directional solidification, respectively. It is shown that the dendritic arm spacing are not significantly affected by interdendritic convection for both solidification configurations and single growth laws are proposed for both cases. The Bouchard- Kirkaldy model is shown to overestimate the experimental primary dendritic arm spacing, despite fitting properly the secondary dendrite arm spacing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.