Abstract

Treatments of crops with additives to increase their productivity may pose environmental risks and induce negative effects also on non-target organisms. In this study, we investigated the potential effect of chestnut wood distillate (pyroligneous acid) used in agriculture, on the accumulation of trace elements in aquatic plants. As a model species, the common water fern Azolla filiculoides Lam. was selected, being often used also in phytoremediation processes. The content of selected elements of toxicological concern (As, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Zn) was assessed in the fern after short-term treatments (1–3 days) over a range of wood distillate concentrations 1:300 (3.33 mL/L), 1:500 (2.00 mL/L), 1:700 (1.43 mL/L). A statistically significant accumulation of Cd, Cu, Mn, Pb, Zn (1:700) and Pb (1:300) was recorded after three days of incubation, despite the concentrations remained overall low. Using treatment vs. control ratios, a trend of increasing temporal uptake was detected for As, Ba, Fe, Mn, Pb (1:700); Mn, Pb (1:500), and only Pb at 1:300. The results suggested that, under the experimental conditions, element uptake is positively influenced by time and negatively by increasing concentrations of wood distillate, likely due to the acidification of the medium. On the whole, the element concentrations measured in A. filiculoides were low and did not pose any toxicological concern.

Highlights

  • The application of synthetic pesticides and fertilizers is a common practice to increase crop productivity all over the world

  • The trace element content of the water fern A. filiculoides treated upon a range of wood distillate concentrations highlighted a statistically significant uptake of Cd, Cu, Mn, Pb, Zn (1:700)

  • It was possible to compare the results about potential bioaccumulation in the water fern with other cryptogams, which have a high ability to take up nutrients and contaminants all over their surfaces, being sensitive and useful bioindicators of environmental contamination [32]

Read more

Summary

Introduction

The application of synthetic pesticides and fertilizers is a common practice to increase crop productivity all over the world. Undesirable side effects on biota and the environment caused by their excessive use are widely recognized, including ecosystem imbalance, environmental contamination and damages to non-target organisms [1,2,3] These and other negative aspects led to the development of organic agriculture with environmentally-friendly practices, promoting among the appropriate regulatory frameworks a reduced use of synthetic pesticides, herbicides and fertilizers. These practices are expected to mitigate climate change, desertification, to preserve biodiversity and produce significant social, economic and environmental benefits [4,5]. The development of Plants 2020, 9, 1179; doi:10.3390/plants9091179 www.mdpi.com/journal/plants

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.