Abstract

Female coho salmon, Oncorhynchus kisutch, were fed one of two experimental feeds containing lipids with markedly different stable 13C isotope signatures during the late cortical alveolus, lipid droplet, and vitellogenesis stages of secondary oocyte growth. Ovarian and muscle lipids fatty acid concentrations were significantly affected by treatment during all three stages of development. Stable 13C isotope analyses confirmed that dietary lipids were incorporated into both ovarian and muscle lipids during all three stages and revealed that ovarian lipids were more affected than muscle lipids during vitellogenesis. Arachidonic acid (ARA) was incorporated into ovarian lipids at the highest rate of all fatty acids examined with the greatest uptake observed during the cortical alveolus and lipid droplet stages of development. Docosahexaenoic acid (DHA) was incorporated into ovarian lipids at the next highest rate with the greatest uptake observed during the lipid droplet stage of development. The presence of an ovary specific, fatty acid transfer mechanism is proposed. Results from this study demonstrate the ability to greatly alter the fatty acid composition of ovarian lipids through a dietary change during secondary oocyte growth and may be of great interest to producers of farmed salmon and salmon broodstock programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.