Abstract

Sphingolipids are found in all eukaryotic organisms. However, little is known about the digestion, uptake and subsequent metabolism of these constituents of food. In this study, radiolabeled sphingolipids were placed in isolated intestinal segments of female CF1 mice, and the metabolism and distribution of the radiolabel were followed. Most of the sphingomyelin was degraded to ceramide and other products in all regions of the intestine, and increasing amounts of several [3H]-labeled sphingolipids appeared in the tissues. Small amounts of the radiolabel disappeared from the intestinal loops and appeared in liver within the first 30 to 60 min implying that neither intact sphingomyelin nor its metabolites are transported very efficiently from the intestine to other organs. There were different degrees of uptake and metabolism of sphingomyelin, [4,5-3H-sphinganyl]ceramide, and [3H]sphingosine. The [3H]sphingomyelin was also administered by gavage and the appearance along the intestine measured. After 90 min, 12% was found in the cecum and colon. These results establish that some of the sphingomyelin that enters the gastrointestinal tract is hydrolyzed and taken up by the intestine, with the lipid backbone being degraded or reutilized for complex sphingolipid synthesis; however, at least a portion passes into the large intestine. The appearance of bioactive compounds throughout the gastrointestinal tract may alter the behavior of intestinal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.