Abstract

D(5) dopamine receptor (D(5)R)-deficient (D(5)(-/-)) mice have hypertension that is aggravated by an increase in sodium intake. The present experiments were designed to test the hypothesis that a dysregulation of renal sodium transporters is related to the salt sensitivity in D(5)(-/-) mice. D(5)R was expressed in the renal proximal tubule, thick ascending limb, distal convoluted tubule, and cortical and outer medullary collecting ducts in D(5)(+/+) mice. On a control Na(+) diet, renal protein expressions of NKCC2 (sodium-potassium-2 chloride cotransporter), sodium chloride cotransporter, and alpha and gamma subunits of the epithelial sodium channel were greater in D(5)(-/-) than in D(5)(+/+) mice. Renal renin abundance and urine aldosterone levels were similar but renal angiotensin II type 1 receptor (AT(1)R) protein expression was increased in D(5)(-/-) mice. An elevated Na(+) diet increased further the elevated blood pressure of D(5)(-/-) mice but did not affect the normal blood pressure of D(5)(+/+) mice. The increased levels of NKCC2, sodium chloride cotransporter, and alpha and gamma subunits of the epithelial sodium channel persisted with the elevated Na(+) diet and unaffected by chronic AT(1)R blockade (losartan) in D(5)(-/-) mice. The expressions of proximal sodium transporters NHE3 (sodium hydrogen exchanger type 3) and NaPi2 (sodium phosphate cotransporter type 2) were increased by the elevated Na(+) diet in D(5)(-/-) mice; the increased expression of NHE3 but not NaPi2 was abolished by AT(1)R blockade. Our findings suggest that the increased protein expression of sodium transporters/channels in distal nephron segments may be the direct consequence of the disruption of D(5)R, independent of the renin-angiotensin aldosterone system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.